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We design a language model based on a generative dependency structure for sentences.

The parameter of the model is the probability of a dependency N-gram, which is

composed of lexical words with four types of extra tag used to model the dependency

relation and valence. We further propose an unsupervised expectation-maximization

algorithm for parameter estimation, in which all possible dependency structures of a

sentence are considered. As the algorithm is language-independent, it can be used on

a raw corpus from any language, without any part-of-speech annotation, tree-bank

or trained parser. We conducted experiments using four languages, i.e., English,

German, Spanish and Japanese, to illustrate the applicability and the properties of the

proposed approach. We further apply the proposed approach to a Chinese microblog

data set to extract and investigate Internet-based, non-standard lexical dependency

features of user-generated content.
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1 Introduction

Statistical language models are a fundamental component of speech recognition systems, ma-

chine translation systems and so forth. At present, the N-gram language model is the most widely

used approach. This model focuses on sequences of neighboring lexical words (Figure 1) and uses

the probabilities of these sequences as model parameters. Due to the complete lexicalization of

the N-gram language model, local features of word sequences can be well modeled. However,

an N-gram language model cannot capture relatively long-range features, because it considers a

sentence as a flat string and ignores its structure.

Revealing a sentence structure is the task of parsing, which is based on linguistically ori-

ented formulations, and it focuses on generating the likeliest structure for a given sentence,

using constituency- or dependency-based formulations. The former organizes continuous word

sequences in a hierarchy of small to large range groups with linguistically oriented labels, while

the latter directly links words with dependency relations1 (Figure 2).

† Department of Computer Science, University of Tsukuba
1 In general, the dependency relations can be further classified using linguistically oriented labels. However,
they are not indispensable, and we do not use them in our approach. For the figures in this study, we use the

following representation to show the dependency structure. If two aligned words are on different levels, the
upper one is the head of the lower one; if they are on the same level, they are siblings.
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In this study, we focus on introducing sentence structure into language modeling. We pro-

pose a generative dependency N-gram language model that integrates the generative dependency

structure of a sentence into the original N-gram language model. We prefer the dependency-

based formulation because it can directly model the relations between words. In the proposed

model, the parameter is the probability of the dependency N-gram, which is a sequence of words

along the dependency structure rather than along a flat left-to-right string. The proposed model

is thus as completely lexical as the original N-gram language model. We further propose an

expectation-maximization (EM) algorithm for estimating the probability of arbitrary order2 de-

pendency N-grams, by considering all possible dependency structures3 of a sentence (Figure 3).

Fig. 1 N-gram language model. For N = 2, the model treats the English sentence “all things pass” as

being constructed from the bi-grams (all, things) and (things, pass).

Fig. 2 Constituency-based parsing (A) and dependency-based parsing (B) of the English sentence

“all things pass”.

Fig. 3 All possible dependency structures for the English sentence “all things pass”. (I) is the linguis-

tically correct structure, while the original N-gram language model handles the sentence as if it

has the structure labeled (II). We consider all these structures in our unsupervised estimation

algorithm.

2 In this study, the term “order” of a dependency N-gram means the number of lexical words (N) in a head-
modifier chain, which is used as an extension of the original N-gram. In the context of dependency parsing,

“order” generally means the number of words in a treelet, which can contain relations such as siblings, ancestors
and descendants. That is, the “order” in this study is restricted to include only ancestors.

3 Only projective dependency structures are considered.
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The proposed algorithm is unsupervised, language-independent and needs no linguistic informa-

tion.

2 Related Work

The technical report by (Chen and Goodman 1998) has compared various approaches to the

N-gram language model and the modified Kneser-Ney (KN) discounting proposed in it is still the

state-of-the-art. Since the N-gram language model only captures local lexical features, there have

been proposals to generalize the lexical N-gram by word class (Brown, deSouza, Mercer, Pietra,

and Lai 1992) or to model long-range word co-occurrences by word triggers (Tillmann and Ney

1997). However, these models are unaware of the sentence structure, and they basically take a

sentence as a flat string.

Many approaches have been proposed for constituency-based parsing (Collins 1998; Klein and

Manning 2003, 2004) and for dependency-based parsing (Eisner 1996; Lee and Choi 1997; Kudo

and Matsumoto 2002; Klein and Manning 2004; Nivre 2008; Koo and Collins 2010; Zhang and

McDonald 2012). Discriminative approaches (Kudo and Matsumoto 2002; Nivre 2008) are used

more than generative ones for dependency-based parsing, because a generative model is usually

restricted to being bi-lexical (i.e., the components are bi-grams of head-modifier pairs). Specific

algorithms have been designed to handle more complex dependency relations (Koo and Collins

2010; Zhang and McDonald 2012), and these allow the consideration of more lexical information

in a generative model.

There have been attempts to integrate sentence structure into language modeling. (Chelba and

Jelinek 2000) have proposed a constituency-based approach, but the use of language-dependent

non-terminals cannot be avoided. There are also dependency-based approaches. One straightfor-

ward method is to construct a language model based on the decisively best structure produced

by a parser (Stolcke, Chelba, Engle, Jimenez, Mangu, Printz, Ristad, Rosenfeld, Wu, Jelinek,

and Khudanpur 1997; Gao and Suzuki 2003; Graham and van Genabith 2010). These approaches

can be considered to convert the left-to-right string in the original N-gram model to a completely

syntax-driven tree structure. A more reasonable method is to consider all dependency structures

of a sentence. One such attempt is the bi-gram head-modifier model of (Lee and Choi 1998),

which is based on the parsing approach of (Lee and Choi 1997).

In our approach, we consider all dependency structures of a sentence and try to include

more lexical information. We extend the approach of (Lee and Choi 1997) to head-modifier

chains of arbitrary words, rather than head-modifier pairs. We also use extra tags of the type
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typically found in parsing models. These tags are treated as general lexical words and are used

to model the valence of a head word. The parsing approaches of (Koo and Collins 2010) also

handle more lexical information in a dependency structure, including complex relations, such

as the sibling relation. However, the use of high-order dependency patterns in the approach is

limited. As described in (Zhang and McDonald 2012), arbitrary orders of lexical information

with arbitrary dependency relations can be handled only if the proper algorithms are designed,

and designing these becomes more complex with the increasing number of lexical words and

dependency relations. Our approach concentrates only on the head-modifier chain, that is, a

sequence of parent-child relations. Therefore, our approach is a direct extension of the original

N-gram model, which models a lexical word sequence, without branching. We will also show that

a head-modifier chain of arbitrary order can be modeled in a uniform algorithm, which will not

increase in formulation complexity when the order increases.

3 Generative Dependency Model

We model the marginal probability of a sentence S over set D of all possible dependency

structures of S: P (S) =
∑

d∈D P (S, d). As described in (Klein and Manning 2004), if we separate

the dependency structure and lexicalization, then
∑

d∈D P (S, d) =
∑

d∈D P (d)P (S|d). The term
P (S|d) is given by a model of completely lexical word sequences with dependency relations.

However, the term P (d), which is the probability of a dependency graph without lexical words,

is difficult to model. In earlier studies , the P (d) term is taken as a constant or omitted (i.e.,

taken as 1) for simplicity, as in (Paskin 2002; Lee and Choi 1998). For example, in (Lee and Choi

1998), the probability of a sentence S is calculated as P (S) =
∑

d∈D

∏
(x→y)∈d P (x → y), where

the element (x → y) is a lexical head-modifier pair in a given dependency structure d. Thus, the

term
∏

x→y∈d P (x → y) is equivalent to P (S|d).
To combine the dependency structure and lexicalization, the valence, which represents the

modifier numbers of a head word, should be modeled. A dependency model with valence (DMV)

is proposed by (Klein and Manning 2004). DMV is a generative model that includes a special

mark, STOP, to terminate the modifier sequence of a head word. With the help of the STOP

mark, the number of modifiers can be controlled. It is necessary to distinguish the two types

of parameters, i.e., PSTOP and PCHOOSE in the bi-gram estimation, which makes it difficult to

extend the approach to higher orders.

In a similar approach to that used in DMV, we introduce four types of tag to normalize

the distribution of modifier numbers (the valence) of a head word. In this study, we use ⟨L⟩
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(resp. ⟨/L⟩) and ⟨R⟩ (resp. ⟨/R⟩) to show the start (resp. end) of the left and right modifier

word sequences of a head word. The dependency structure can thus be organized as nested word

sequences. Specifically, modifier word sequences of a head word are of the form M = mϕ+1
0 ≡

m0,m1, · · · ,mϕ+1, where m0 ≡ ⟨O⟩, mϕ+1 ≡ ⟨/O⟩ (O ∈ {L,R}), and mϕ
1 is a lexical ϕ-word

sequence. We show an example of the dependency structure in Figure 4. For example, in Figure 4,

the word get has a left modifier word sequence “⟨L⟩ i ⟨/L⟩” and a right modifier word sequence

“⟨R⟩ book from ⟨/R⟩”. In contrast to the treatment in DMV, we treat tags as ordinary words in

the parameter estimation. This means parameters of our model have a uniform representation,

by which our approach can be easily extended to arbitrary high orders.

Our model is essentially equivalent to the generative Model C in (Eisner 1996). In other

words, the sequence ⟨O⟩mϕ
1 ⟨/O⟩ (O ∈ {L,R}) is generated as a Markov sequence to serve as the

modifier word sequences (left/right separately) of the head word. The “start tag” ⟨O⟩ always

satisfies P (m0 = ⟨O⟩) ≡ 1 to represent the nested structure. The “end tag” ⟨/O⟩ terminates

the generation process: the larger P (mϕ+1 = ⟨/O⟩) is, the smaller ϕ, which is the number of

generated words, becomes and vice versa.4

Without loss of generality, the probability of mκ+1 (0 < κ ≤ ϕ) in M = mϕ+1
0 can be

represented by P (mκ+1|mκ
0 ,H), where H is the history of M along the generated path5. We use

Fig. 4 A dependency structure for the English sentence “i get a book from him .”, with ⟨L⟩, ⟨R⟩, ⟨/L⟩,
⟨/R⟩ tags. The root of the sentence is marked as ⟨/s⟩, and for a word without modifiers, its

modifier word sequences are ⟨O⟩⟨/O⟩, where O ∈ {L,R} (marked by dashed lines).

4 As to the consistency of our language model, that is, whether
∑

S∈L P (S) = 1 for every possible sentence
S in a language L, we note that it cannot be guaranteed by the generative structure alone. As discussed

in (Wetherell 1980), a language generated by a probabilistic context-free grammar cannot be guaranteed to
be consistent, because the generation process cannot be guaranteed to finish, even when the probabilities are
normalized. However, in this situation, the probabilities of terminal sequences (i.e. sentences) will be very

low, which will lead to a poor performance of the language model. Thus, the results for the proposed approach
reported in this study may underestimate probabilities but will not overestimate them.

5 The generation process can be realized in a depth-first or a breadth-first way, but distinction is not essential.
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the independent assumption that the probability of a word in the generation process only depends

on its direct ancestors and the orientation between them. The probability can be simplified to:

P (h0|o1, h1, . . . , on−1, hn−1), (1)

where hk (k ∈ [1, n − 1]) is the head word of hk−1 and ok (k ∈ [1, n − 1]) shows the orientation

between them. Specifically, hk (k ∈ [0, n− 1]) can be any of the following:

• a lexical word in a given sentence,

• a ⟨/O⟩ (O ∈ {L,R}) tag,
• the sentence-ending tag ⟨/s⟩, which is taken as the root of a sentence, or

• the sentence-beginning tag ⟨s⟩, which is taken as a trivial placeholder,

and ok (k ∈ [1, n− 1]) is a ⟨O⟩ (O ∈ {L,R}) tag.
The “slash” tags, ⟨/s⟩, ⟨/L⟩ and ⟨/R⟩, are taken as lexical words, which are represented by

hk. The “no-slash” tags, ⟨L⟩ and ⟨R⟩, show the direction of a modifier word against its head

word, which is represented by ok. Specifically, for k ∈ [1, n − 1], we have ok = ⟨L⟩ when hk−1

is on the left side of hk, and ok = ⟨R⟩ when hk−1 is on the right side of hk.6 Further, the

sentence-beginning tag ⟨s⟩ is used as a trivial placeholder to increase the order of Exp. (1) to

n. It is used only when hk = ⟨/s⟩ for some k < n − 1.7 For the tags, there are some noticeable

properties, such as the following:

• if hk = ⟨/O⟩ (O ∈ {L,R}), then k ≡ 0; because ⟨/O⟩ (O ∈ {L,R}) cannot have modifiers,

• if h0 = ⟨/L⟩, then o1 ≡ ⟨L⟩, and if h0 = ⟨/R⟩, then o1 ≡ ⟨R⟩,
• if hk = ⟨/s⟩ (k ∈ [1, n− 1]), then ok ≡ ⟨L⟩,
• if hk = ⟨/s⟩ (k ∈ [1, n− 2]), then both ok+1 ≡ ⟨R⟩ and hk+1 = ⟨s⟩,
• if hk = ⟨s⟩ (k ∈ [1, n− 2]), then both ok+1 ≡ ⟨R⟩ and hk+1 = ⟨s⟩.
For example, a dependency N-gram is (⟨/L⟩, ⟨L⟩, him, ⟨R⟩, from, ⟨R⟩, get, ⟨L⟩, ., ⟨L⟩, ⟨/s⟩)

in the dependency structure illustrated in Figure 4. We can see ⟨O⟩ (O ∈ {L,R}) tags between
words show the relevant position between head and modifier words. In fact, all words in a modifier

sequence share the same ⟨O⟩ (O ∈ {L,R}). For example, in Figure 4, the “book” and “from”

share the same ⟨R⟩ tag as they are both in the right modifier word sequence of the head word

“get”.

The sequence (h0, o1, h1, . . . , on−1, hn−1) in Exp. (1) is referred as a dependency N-gram.

6 The use of an index in Exp. (1) can be interpreted as h0 is on the o1 side of its head word h1, which is on

the o2 side of its head word h2, and continue this pattern to hn−2, which is on the on−1 side of its head word
hn−1.

7 Hence, we omit the ⟨s⟩ tag in Figure 4 as it adds nothing to the structure.
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Exp. (1) is the probability of the dependency N-gram and thus the parameter of our model,

where the dependency relation and valence are modeled uniformly for arbitrary orders.

From the probability of the dependency N-gram of Exp. (1), the probability of a given de-

pendency structure d of a sentence S can be calculated as
∏

h0∈d p(h
0|o1, h1, . . . , on−1, hn−1).

Because of how we use ⟨/O⟩ (O ∈ {L,R}) tags, the
∏

h0∈d p(h
0|o1, h1, . . . , on−1, hn−1) is equiv-

alent to P (S, d) rather than to P (S|d), as in (Lee and Choi 1998). We show an example of the

P (S, d) from Exp. (2) to Exp. (6) according to the structure in Figure 4, proceeding layer by

layer8. We can see there are many terms of the type h0 = ⟨/O⟩ (O ∈ {L,R}) in the calculation.

This can be considered a “discount” for the product of lexical terms to represent the “structure

probability” p(d), although p(d) is never separated as an individual term because we merge the

lexicalization and dependency structure in our calculations.

P (S, d) =

P (.|⟨L⟩ ⟨/s⟩) (2)

·P (get|⟨L⟩ . ⟨L⟩ ⟨/s⟩)P (⟨/L⟩|⟨L⟩ . ⟨L⟩ ⟨/s⟩)P (⟨/R⟩|⟨R⟩ . ⟨L⟩ ⟨/s⟩) (3)

·P (i|⟨L⟩ get ⟨L⟩ . · · · )P (⟨/L⟩|⟨L⟩ get ⟨L⟩ . · · · )

· P (book|⟨R⟩ get ⟨L⟩ . · · · )P (from|⟨R⟩ get ⟨L⟩ . · · · )P (⟨/R⟩|⟨R⟩ get ⟨L⟩ . · · · ) (4)

·P (⟨/L⟩|⟨L⟩ i ⟨L⟩ get · · · )P (⟨/R⟩|⟨R⟩ i ⟨L⟩ get · · · )

· P (a|⟨L⟩ book ⟨R⟩ get · · · )P (⟨/L⟩|⟨L⟩ book ⟨R⟩ get · · · )P (⟨/R⟩|⟨R⟩ book ⟨R⟩ get · · · )

· P (⟨/L⟩|⟨L⟩ from ⟨R⟩ get · · · )P (him|⟨R⟩ from ⟨R⟩ get · · · )P (⟨/R⟩|⟨R⟩ from ⟨R⟩ get · · · ) (5)

·P (⟨/L⟩|⟨L⟩ a ⟨L⟩ book · · · )P (⟨/R⟩|⟨R⟩ a ⟨L⟩ book · · · )

· P (⟨/L⟩|⟨L⟩ him ⟨R⟩ from · · · )P (⟨/R⟩|⟨R⟩ him ⟨R⟩ from · · · ) (6)

The probability of a sentence S can then be calculated by P (S) =
∑

d∈D P (S, d), where the

left-to-right generation of the original N-gram model is naturally included, and the probability

of it will be discounted by the terms of the form h0 = ⟨/O⟩ (O ∈ {L,R}).

4 Parameter Estimation

4.1 Notation

We denote a sentence with l words as S = wl+1
0 ≡ w0, w1, · · · , wl+1, where w0 ≡ ⟨s⟩ and

wl+1 ≡ ⟨/s⟩; each wk (k ∈ [1, l]) is an ordinary lexical word. In a sentence S = wl+1
0 , we denote

a dependency N-gram (h0, o1, h1, . . . , on−1, hn−1) by an N-tuple d = (d0, d1, . . . , dn−1) according

to the following definition.

dk =

hk, if k = 0 and hk is a ⟨/O⟩ (O ∈ {L,R})

i such that hk = wi, otherwise
(7)

8 From Exp. (4), we omit part of the histories for brevity.

987



Journal of Natural Language Processing Vol. 21 No. 5 September 2014

The definition of dk in Exp. (7) thus shows the relation between hk and dk. Because the ⟨s⟩,
⟨/s⟩, ⟨/L⟩ and ⟨/R⟩ tags are taken as lexical words in a dependency N-gram, they can appear

in a d. In our notation, ⟨s⟩ and ⟨/s⟩ are assigned absolute positions of 0 and l + 1, respectively,

in an l-word sentence, so they can be trivially integrated in a d. Conversely, as ⟨/L⟩ and ⟨/R⟩
tags are attached to every word in a sentence, we cannot assign absolute positions to them, so,

they remain in a d with no transformation to absolute position. Consequently, dk in a d can

be an integer in [0, l + 1] or a ⟨/O⟩ (O ∈ {L,R}) tag. In fact, because ⟨/L⟩ and ⟨/R⟩ tags can

appear only as h0 in a dependency N-gram, they only appear as d0 in a d. The N-tuple d with

a d0 = ⟨/O⟩ (O ∈ {L,R}) will play a special role in the recursive definition in Section 4.2.

Because the magnitudes of dk and dk+1 (k ∈ [0, n − 2]) show the orientation, ok+1 can be

omitted. In addition, ok+1 can be unambiguously omitted for the ⟨/L⟩ and ⟨/R⟩ tags because of

the properties we mentioned in the previous section. Consequently, the ⟨L⟩ and ⟨R⟩ tags never

need to appear in a d. As an example, the dependency N-gram (⟨/L⟩, ⟨L⟩, him, ⟨R⟩, from, ⟨R⟩,
get, ⟨L⟩, ., ⟨L⟩, ⟨/s⟩) in the dependency structure illustrated in Figure 4 can be denoted by a

d = (⟨/L⟩, 6, 5, 2, 7, 8) given the sentence “i (1) get (2) a (3) book (4) from (5) him (6) . (7)”.

(Lee and Choi 1997) propose the complete-link set and complete-sequence set for head-modifier

pairs (i.e., a dependency bi-gram in our model) to handle all possible projective dependency

structures of a sentence in a recursive manner. We follow the terms they use and extend their

definitions to adapt them to our dependency N-gram model. We use Link(d) to denote the

complete-link set of an N-tuple d and Seq(d) for the complete-sequence set.

In (Lee and Choi 1997), the complete-link set of a span [i, j] in a sentence is composed of

all possible dependency structures within the span, with the directional dependency link of the

two words wi and wj . The complete-sequence set of a span [i, j] is defined as the set of all

possible sequences with any number (including zero) of adjacent complete-link sets having the

same direction within the span. By our notation, the word at d1 is the direct head of the word

at d0 for Link(d0, d1), but the word at d1 is an ancestor (not only a direct head) of the word

at d0 for Seq(d0, d1). The two types of set can be defined recursively, and the set of all possible

dependency structures of a sentence S = wl+1
0 is the complete-sequence set over the span [1, l+1]

or is the complete-link set over the span [0, l + 1]9. We illustrate these recursive relations in

Figure 5 and 6.10

9 Because p(⟨/s⟩|⟨R⟩ ⟨s⟩) ≡ 1, which is one of the properties we have described, the two complete sets have the

same probability. This is also mentioned in (Lee and Choi 1997).
10 By our notation, there is no necessity to show the head-modifier relation by arrows in Figure 5 to 8. These

figures show the relation between N-tuples, rather than directional pairs.
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Fig. 5 Link(d = (i, j)). In (Lee and Choi 1997),

for a span [i, j], Link(i, j) is composed of

the dependency link of wi and wj , and

all possible pairs of complete-sequence sets

Seq(x, i) and Seq(x+ 1, j).

Fig. 6 Seq(d = (i, j)). In (Lee and Choi

1997), for a span [i, j], Seq(i, j) is

composed of all possible pairs of

complete-sequence set Seq(i, x) and

complete-link set Link(x, j).

Fig. 7 Link(d = (i, j, k)). In our model, an ex-

tended high-order (three-order is shown

here) complete-link set Link(i, j, k) is com-

posed of the N-tuple d, and all possible

pairs of complete-sequence sets Seq(x, i, j)

and Seq(x+ 1, j, k).

Fig. 8 Seq(d = (i, j, k)). In our model,

an extended high-order (three-order

is shown here) complete-sequence

set Seq(i, j, k) is composed of all

possible pairs of complete-sequence

set Seq(i, x, j) and complete-link set

Link(x, j, k).

Because more than two words are involved in the proposed dependency N-gram, we generalize

the two types of set for the N-tuples d, rather than just spans. The generalization still retains

the properties of d0 and d1 in Link(d) and Seq(d), as well as the recursive properties of the two

types of set. We show the examples of a dependency tri-gram in Figure 7 and 8.

4.2 Recursive Definition

Here, we provide the formulation of the recursive definition of the complete-link set and

complete-sequence set for an arbitrary order dependency N-gram.

In the description of the calculation example shown from Exp. (2) to Exp. (6) in Section 3,

we mentioned that those terms h0 = ⟨/O⟩ (O ∈ {L,R}) can be considered as a “discount” of the

product of lexical terms. By the definition in Exp. (7) in Section 4.1, we can further see that

h0 = ⟨/O⟩ (O ∈ {L,R}) terms are represented by the N-tuple d with d0 = ⟨/O⟩ (O ∈ {L,R})
and the other lexical terms are represented by the N-tuple d in which all the dk (k ∈ [0, n− 1])

are integers. For clarity, in this section, we will first describe the recursion definition of lexical

terms without d0 = ⟨/O⟩ (O ∈ {L,R}) involved up to Exp. (17). Next, we turn to the “discount”

terms, that is, the case of d0 = ⟨/O⟩ (O ∈ {L,R}), from Exp. (18) to Exp. (21).
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First, due to the properties of the projective dependency structure, any dk (k ∈ [1, n − 1])

in the N-tuple d = (d0, d1, . . . , dn−1) needs to satisfy the following constraint of Exp. (8) to

guarantee that a head word is outside the range covered by a chain of its descendants.

dk > max(d0, · · · , dk−1), or dk < min(d0, · · · , dk−1) (8)

The max(·) and min(·) operations are used to get the maximum and minimum from a tuple

composed of integers.

Trivially, we take ⟨/s⟩ as the root mark of a sentence S = wl+1
0 , and the ⟨s⟩ as the head of

itself or as the head of the ⟨/s⟩. So, we have the following constraints:

if dk−1 = l + 1 or dk−1 = 0, then dk = 0, for k ∈ [1, n− 1] (9)

To reveal the relations between N-tuples, we introduce three basic operations, Push, Cover

and Insert, over an index x (absolute word position) and an N-tuple d = (d0, d1, . . . , dn−1):

Push(x,d) = (x, d0, d1, . . . , dn−2) (10)

Cover(x,d) = (x, d1, d2, . . . , dn−1) (11)

Insert(x,d) = (d0, x, d1, . . . , dn−2) (12)

With the three operations, we can express the relation shown in Figure 7 as follows:

Link(i, j, k) =
∪

i≤x<j

{Seq(Push(x, (i, j, k)))× Seq(Cover(x+ 1, (i, j, k)))× {(i, j, k)}}. (13)

Here, the symbol × indicates the direct product of sets. That Seq(Push(x, (i, j, k))) ≡ Seq(x, i, j)

and Seq(Cover(x+ 1, (i, j, k))) ≡ Seq(x+ 1, j, k) follows from their definitions.

Moreover, the relation shown in Figure 8 can be expressed as follows:

Seq(i, j, k) =
∪

i≤x<j

{Seq(Insert(x, (i, j, k)))× Link(Cover(x, (i, j, k)))}. (14)

Here, that Seq(Insert(x, (i, j, k))) ≡ Seq(i, x, j) and Link(Cover(x, (i, j, k))) ≡ Link(x, j, k) fol-

lows from the definitions.

Then, we can provide the formal definition of the Link(d) and Seq(d) for an arbitrary order

d by Exp. (15) and Exp. (17) below.
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Link(d) =
∪

if d1=l+1, then i=d1−1;
else i∈[min(d0,d1),max(d0,d1)−1]

{Seq(Left(i,d))× Seq(Right(i+ 1,d))× {d}} (15)

where (Left ,Right) =

(Push,Cover), if d0 < d1

(Cover ,Push), if d0 > d1

(16)

Seq(d) =
∪

i∈[min(d0,d1), max(d0,d1)]
and i ̸=d1

{Seq(Insert(i,d))× Link(Cover(i,d))} (17)

Exp. (15) shows that a complete-link set is recursively composed of the direct product of

all possible complete-sequence set pairs, with the N-tuple d itself.11 Exp. (17) shows that a

complete-sequence set is recursively composed of the direct product of all possible pairs of a

complete-link set and a smaller complete-sequence set.

In Exp. (15) and Exp. (17), if d0 = d1, which violates the restriction of Exp. (8), we then

replace d0 by ⟨/L⟩ and ⟨/R⟩ as follows. In fact, in this situation alone, ⟨/L⟩ and ⟨/R⟩ can appear

in a d as d0, which is mentioned in the definition of Exp. (7) and related properties. The complete

sets containing ⟨/O⟩ (O ∈ {L,R}) tags start the recursive definition.

Left(x,d) = Left(⟨/R⟩,d), if x = min(d0, d1) in Exp. (15) (18)

Right(x,d) = Right (⟨/L⟩,d), if x = max(d0, d1) in Exp. (15) (19)

Insert(x,d) = Push(⟨/L⟩,d), if x = d0, and d0 < d1 in Exp. (17) (20)

Insert(x,d) = Push(⟨/R⟩,d), if x = d0, and d0 > d1 in Exp. (17) (21)

4.3 Estimation

According to the recursive definitions, it is natural to derive an inside-outside algorithm (Lari

and Young 1990), which is an adaption of the EM algorithm (Dempster, Laird, and Rubin 1977)

to tree structures, to conduct parameter re-estimation by calculating the inside and outside

probabilities of all complete sets in sentences.

We generalize the expressions in Exp. (15) and Exp. (17) to Exp. (22) and Exp. (23), respec-

tively. In Exp. (22), Sub1 and Sub2 mean the Seq(Left(·)) and the Seq(Right(·)), respectively,
on the right-hand side of Exp. (15). In Exp. (23), Sub1 and Sub2 mean the Seq(Insert(·)) and
the Link(Cover(·)), respectively, on the right-hand side of Exp. (17). The notation ⟨·, ·⟩ in Exp.

(22) and Exp. (23) represents an unordered two-tuple of a complete-set pair.

11 We further restrict the root mark ⟨/s⟩ to take only one modifier (the situation when d1 = l+ 1 in Exp. (15)),
according to the general restrictions of the dependency grammar.
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Link(d) =
∪

∀⟨Sub1,Sub2⟩

{Sub1 × Sub2 × {d}} (22)

Seq(d) =
∪

∀⟨Sub1,Sub2⟩

{Sub1 × Sub2} (23)

We further define RLink(Link(d), ⟨Sub1,Sub2⟩) as a relation for Link(d), ⟨Sub1,Sub2⟩ satisfying
Exp. (22). Similarly, RSeq(Seq(d), ⟨Sub1,Sub2⟩) is a relation for Seq(d), ⟨Sub1,Sub2⟩ satisfying
Exp. (23). Then, the inside probability β and outside probability α of the two types of complete

set can be calculated by Exp. (24) to Exp. (27), where p(d) is the probability of the lexical

dependency N-gram, represented by d in a sentence.

β(Link(d)) =
∑

⟨Sub1 ,Sub2⟩, s.t.
RLink(Link(d),⟨Sub1,Sub2⟩)

β(Sub1) · β(Sub2) · p(d) (24)

β(Seq(d)) =
∑

⟨Sub1,Sub2⟩, s.t.
RSeq(Seq(d),⟨Sub1,Sub2⟩)

β(Sub1) · β(Sub2) (25)

α(Link(d)) =
∑

⟨Sup,Con⟩, s.t.
RSeq(Sup,⟨Link(d),Con⟩)

α(Sup) · β(Con) (26)

α(Seq(d)) =
∑

⟨Sup,Con⟩, s.t.
RLink(Sup,⟨Seq(d),Con⟩)

α(Sup) · β(Con) · p(d′) +
∑

⟨Sup,Con⟩, s.t.
RSeq(Sup,⟨Seq(d),Con⟩)

α(Sup) · β(Con)

(where d′ is the N-tuple of Sup)

(27)

Specifically, Exp. (24) and Exp. (25) can be directly derived from the respective definitions

of Exp. (15) and Exp. (17). Further, a complete-link set can only be a component of a complete-

sequence set from Exp. (17), while a complete-sequence set can be both a component of a

complete-link set from Exp. (15) and a component of a complete-sequence set from Exp. (17).

Consequently, Exp. (26) and Exp. (27) can both be derived.

For all Seq(d) with ⟨/L⟩ or ⟨/R⟩, we use

β(Seq(d)) = p(d) (28)

as the start of the calculation. At the end of the calculation, the probability of the entire sentence

S = wl+1
0 can be obtained as follows:

P (S) = β(Seq(d = (1, l + 1, 0, · · · , 0))) (29)
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For re-estimation, we can obtain the probabilistic counts12 of a dependency N-gram repre-

sented by d in a sentence using:

β(Link(d)) · α(Link(d))
P (S)

13 (30)

according to the inside-outside algorithm. Finally, all the counts of the dependency N-gram in

the training corpus are added and normalized using Exp. (1) to update the model parameters.

We show the details of the re-estimation algorithm with pseudocode in Appendix A.

5 Experiments

5.1 Experiment Setting

As the proposed dependency N-gram model and estimation algorithm are independent from

language, we conduct experiments using four different languages, i.e., English, German, Spanish

and Japanese. The corpora we use for English, German and Spanish are sets of sentences with

5–15 words from the corresponding single-language corpora of Europarl14 (Koehn 2005). The

corpus for Japanese is a set of sentences with 5–20 words from the Japanese side of the NTCIR-

8 corpus (Fujii, Utiyama, Yamamoto, Utsuro, Ehara, Echizen-ya, and Shimohata 2010). We

take 1
200 of the sentences from a corpus to form each of the development and test sets used

in experiments, and the remaining sentences are used for training. The details of training,

development (denoted dev.) and test sets are shown in Table 1 and 2.

To investigate the fundamental properties of the model and algorithm, we do not use any

pruning or approximating methods in the parameter estimation. Specifically, we collect all possi-

ble lexical dependency N-grams15 from the raw corpora without any cut-off thresholds for models

Table 1 Training sets

language sentences types tokens

English 400, 100 40, 913 4, 355, 333

German 422, 951 105, 303 4, 545, 263

Spanish 370, 791 58, 314 4, 007, 816

Japanese 477, 118 47, 930 7, 758, 437

Table 2 Sentences in dev. and test sets

language dev. set test set

English 2, 020 2, 021

German 2, 136 2, 136

Spanish 1, 872 1, 873

Japanese 2, 409 2, 410

12 They are no longer integers.
13 For the situation in Exp. (28), we use

β(Seq(d))·α(Seq(d))
P (S)

.
14 http://www.statmt.org/europarl/
15 As Japanese is a typical head-final language, that is, the head word always comes after its modifiers, we only

take the left-oriented (from head to modifier) dependency links into account. For the other three languages,
dependency links of both orientations are considered. The parameter collection and initialization do not take
the structure into account.
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of any order. Before estimation, we use relative frequency to initialize the probabilities.

5.2 Results

5.2.1 Algorithm Convergence

Figure 9 shows the change of English training set perplexities before each iteration by the

proposed estimation algorithm, for 2 (bi-) and 3 (tri-) order dependency N-gram models. The

convergence trend along with the iteration times can be observed. For the dependency bi-gram,

the training set perplexity becomes nearly stable after five iterations. However, for the depen-

dency tri-gram, the first iteration is at very low training set perplexity, and it does not change

much in further iterations. This phenomenon suggests that the non-pruned dependency tri-gram

model may be complex with many parameters, so the features of the training set are represented

well, resulting in a low perplexity. This suggests the model is overfitting the data. We discuss

this in Section 5.3.

5.2.2 Test Set Perplexity

As well as the training set perplexity, the perplexity of a test set which has not been used in

parameter estimation should be investigated in evaluation. Because different order dependency

N-gram models are trained separately, we use linear interpolation in calculating the test set per-

plexity. Specifically, we use the held-out development set to tune the interpolation coefficients

(weights) and to select the iteration times of different order models to minimize the development

set perplexity. Next we use the tuned weights to combine the iteration-time-selected models in

the test set perplexity calculation. The reason for using simple and straightforward linear inter-

polation is that we want to discover the essential aspects of the proposed model and algorithm,

so we use no further smoothing approaches. As the lowest order of a dependency N-gram is two,

we use a uni-gram model with modified KN discounting to handle the unknown words. The

uni-gram model is interpolated with the dependency bi-gram model. Furthermore, as the ⟨/L⟩

Fig. 9 English training set perplexities before each iteration (y-axis is logarithmic)
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and ⟨/R⟩ tags are taken as general words, which never really appear in a training set, we treat

them separately, and interpolate them with the uni-gram model. Because the ⟨s⟩, ⟨L⟩ and ⟨R⟩
tags only appear in the history, no other model is needed to handle them.

In Table 3, we show the development and test set perplexities of the linear-interpolated

dependency bi- and tri-gram models. For comparison, we used SRILM16 (Stolcke 2002) to build

two original N-gram language models on the same training sets: one is constructed by maximum

likelihood estimation without any smoothing, and the other is constructed by the state-of-the-art

interpolated modified KN discounting. We calculate the test set perplexities of the two N-gram

language models on the same test sets. The results are listed in Table 4. In both Table 3 and

4, the perplexities are calculated according to the number of lexical words, and the tags used for

normalization are not counted17. We discuss these results in Section 5.3.

Table 3 Development set perplexities (dev-ppl) and test set perplexities (test-ppl) of dependency N-

gram models (N = 2 (bi), 3 (tri))

language dev-ppl (bi / tri) test-ppl (bi / tri) iterbi iter tri λuni λbi λtri

English 145 / 143 159 / 156 6 1 0.93 0.99 0.13

German 268 / 256 265 / 261 12 1 0.88 0.98 0.04

Spanish 165 / 164 159 / 158 7 1 0.92 0.99 0.04

Japanese (left-only) 88 / 67 88 / 67 4 1 0.86 0.99 0.70

The iteration times in dependency bi- and tri-gram model training are iterbi and iter tri , respectively. The

weights of uni-gram, dependency bi- and tri-gram models are λuni , λbi and λtri , respectively. (1 − λbi)

and (1− λtri) are assigned to the interpolated lower order models and (1− λuni) is assigned to the ⟨/L⟩
and ⟨/R⟩ tags.

Table 4 Test set perplexities of the original N-gram models

language MLE (bi / tri) MKN (bi / tri)

English 162 / 457 157 / 86

German 396 / 1371 252 / 139

Spanish 176 / 499 161 / 86

Japanese 62 / 87 91 / 39

MLE is the maximum likelihood estimation, realized by setting the adding delta to 0 in adding smoothing.

MKN is the interpolated modified KN discounting.

16 http://www.speech.sri.com/projects/srilm/
17 That is, we do not count the ⟨/s⟩ tag in the original N-gram language models, or ⟨/L⟩ and ⟨/R⟩, in our models.

If they are included, the perplexities decrease. In the original N-gram model, this is because a ⟨/s⟩ tag nearly

always appears after the period mark. The effect is even more dramatic in our model, as each word in a
sentence has a ⟨/L⟩ and a ⟨/R⟩ tag to normalize its modifier numbers, so the token number in a sentence is
multiplied. Therefore, for fairness, we only count the lexical words in the perplexity calculation.
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5.3 Discussion

5.3.1 Parameter Number

For a sentence with l words, the number of dependency N-grams that can be collected in-

creases exponentially as O(lN ) if we consider all possible combinations. Although for a given

N , the proposed algorithm takes a time which is polynomial in sentence length l, a large N will

be practically intractable, especially for long sentences. In Figure 10, we show the number of

complete sets of different order dependency N-gram models for different sentence lengths.

This behavior is also related to the overfitting problem, because our algorithm is essentially

an iterative maximum likelihood estimation. A model that is very complex will be extremely

specific to the training set. From Table 3, we see that the performance of a dependency tri-gram

model will saturate after only one iteration, which is also indicated in Figure 9, and does little

to improve the test set perplexities. The exception is Japanese, where the dependency tri-gram

does improve the performance. The linguistic reason for this is that Japanese is a head-final

language with a simpler syntactic structure, so we restrict the dependency link in Japanese to

“left only”, which leads to a model with fewer parameters. Consequently, the high order model

performs better. From the experimental results, we can see that the proposed algorithm has the

usual strengths and weaknesses of an EM algorithm.

5.3.2 Test Set Perplexity

Comparing the test set perplexities in Table 3 and 4, we can see the dependency bi-gram

model achieves the same, or sometimes better, performance as the original N-gram language

models. However, when we look at the tri-grams, the interpolated modified KN discounting

method, which is the state-of-the-art, shows its strength, and our dependency model does not

produce much improvement for the reasons we described above18. As the modified KN method

Fig. 10 Number of complete sets (y-axis is logarithmic)

18 For Japanese, the result is improved by the dependency tri-gram model, but the original tri-gram model with
interpolated modified KN discounting method performs much better.
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uses an efficient discounting to avoid the overfitting problem and our model has no smoothing, the

difference in performance is reasonable for complex models. Conversely, the competitive results

of our bi-gram model and its performance on Japanese show that our model is a promising one,

particularly if the number of parameters can be reduced.

5.3.3 Model Preference

In Figure 11 to 23, we present the examples of the best dependency structures of sentences in

test set generated by our approach. We used the settings in Table 3 and generated them using the

Viterbi algorithm (Viterbi 1967). It can be seen that the proposed approach can reveal features

of specific languages, even though it is unsupervised, such as for the final-position verb “stellen”

and its relation with the second-position auxiliary verb “möchte” in the German sentence in

Figure 15. The results also show a preference for associating semantic relations and making the

function words19 of a language the modifiers of the content words. This tendency is noticeable in

the English examples, such as the particle “to” in Figure 12 and 14 and the “’s” in Figure 14. In

addition, the arrangement of commas around “however” in Figure 11 and around “therefore” in

Figure 14 is impressive. Another example is in the Spanish sentence in Figure 19. Syntactically,

the preposition “a” is the head of the noun “respecto”, but in unsupervised training, our model

prefers to assign “a” to be the modifier of “respecto” and directly link two content words, i.e.

“respecto” and the verb “haciendo”. We think this is because the probabilities of ⟨/L⟩ and

⟨/R⟩ tags have large estimates, especially when they appear after function words, which prevents

them from having modifiers. This tendency, however, is correct for articles, such as the “der” in

German and “la” in Spanish. Furthermore, an interesting phenomenon can be observed in the

Japanese sentence in Figure 23. In the example, the verb stem“応用”is linked to the auxiliary

verb“できる”, and the words of“することが”are arranged as a dependency chain and attached

to“できる”as well. Semantically, the expressions of“応用 できる”(literally: can apply) and

“応用 する こと が できる”(literally: the thing, that applies, can) have nearly the same meaning

and are generally interchangeable. Consequently, the model prefers to designate“する こと が”,

which has a weak semantic function, as a branch and link the semantically-crucial words“応用”

and“できる”directly. All these examples suggest that the proposed model with unsupervised

training has a strong preference for organizing a sentence by semantic relations and for assigning

relations between those words that play a central role in such a semantic unit.

19 Articles, prepositions, etc.
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Example of English Sentences

Fig. 11 Best dependency structure of the sentence “i would , however , add one important caveat .”

Fig. 12 Best dependency structure of the sentence “let us remember what we are trying to do .”

Fig. 13 Best dependency structure of the sentence “we have , therefore , voted against your self-

congratulation .”

Fig. 14 Best dependency structure of the sentence “you are too late to change today ’s agenda .”
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Example of German Sentences

Fig. 15 Best dependency structure of the sentence “trotzdem möchte ich der kommission einige

fragen stellen .”

Fig. 16 Best dependency structure of the sentence “vielen dank , ich emphehle die annahmen des

bericht .”

Fig. 17 Best dependency structure of the sentence “sonst verlieren die bürger in den mitgliedstaaten

das vertauen .”

Fig. 18 Best dependency structure of the sentence “zum beitritt techechiens habe ich mich der stimme

enthalten .”
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Example of Spanish Sentences

Fig. 19 Best dependency structure of the sentence “la comisión está haciendo muchas cosas a este

respecto .”

Fig. 20 Best dependency structure of the sentence “el tratado de lisboa contiene una cláusula social

horizontal .”

Example of Japanese Sentences

Fig. 21 Best dependency structure of the sentence“図 3 は 、 その 実際 の 配置 例 で ある 。”

Fig. 22 Best dependency structure of the sentence“以下 に 、 この 設定 方法 を 説明 する 。”
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Fig. 23 Best dependency structure of the sentence“この よう な 場合 に も 本発明 を 応用 する こと
が できる 。”

6 Application to Microblog Data

6.1 Task and Corpus

Microblogging is an emerging application that provides a new platform for communicating.

Postings on microblogs are usually brief due to restrictions on message length such that no more

than 140 characters may be used. Moreover, microblogs use many non-standard expressions and

Internet-based neologisms. These words and expressions are hard for general natural language

processing tools, which are usually trained on standard data sets, to handle. Therefore, tasks

using microblogs as a huge data source must consider the characteristics of user-generated con-

tent. One example of this is the part-of-speech tagging task on microblogs (Gimpel, Schneider,

O’Connor, Das, Mills, Eisenstein, Heilman, Yogatama, Flanigan, and Smith 2010). However, the

more explicit and structured we want the information extracted from a microblog to be, the more

difficult the task turns out to be, due to the flexible and non-standard use of the expressions.

Because our proposed approach is completely data driven, we think it can efficiently cap-

ture features in user-generated content. In this section, using our proposed model, we focus on

extracting and investigating lexical dependency features from Chinese microblog data.

We use the NLPIR Chinese Weibo corpus20 in our experiment. The corpus contains 230, 000

posts collected from Sina Weibo and Tencent Weibo. During preprocessing, we split the posts into

sentences, delete the tags beginning with@ and# and all the URLs. We use the Stanford Chinese

Word Segmenter21 (Tseng, Chang, Andrew, Jurafsky, and Manning 2005) with the Chinese Penn

Treebank standard to segment each Chinese sentence and take those sentences with 5–30 words

as the training corpus in our experiment. We further normalize the punctuation marks in the

20 http://www.nlpir.org/download/weibo content corpus.rar
21 http://www-nlp.stanford.edu/software/segmenter.shtml
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Table 5 Chinese Weibo corpus

sentences types tokens

304,667 95,239 4,427,543

Fig. 24 Training set perplexities before each iteration (y-axis is logarithmic)

training corpus and replace all words appearing fewer than five times with a symbolic UNK token.

The details of the training corpus are shown in Table 5.

We collect all possible lexical dependency N-grams from the training corpus and use relative

frequency to initialize the probabilities. Figure 24 shows the change of training corpus perplexities

before each iteration for 2 (bi-) and 3 (tri-) order dependency N-gram models. We can observe the

same trend shown in Figure 9. However, our interest is the learned features of the training set.

We discuss the examples of lexical parameters and parsing using a three-time iterated dependency

bi-gram model and a one-time iterated dependency tri-gram model in the next section.

6.2 Discussion

In Table 6, 7 and 8, we show the examples of lexical dependency features with high estimates

of logarithmic probability (log-prob.) with our unsupervised approach.

In Table 6, the examples of dependency bi-grams around general words are shown. We can

see that the dependency relations between them are well modeled. Moreover, in Table 6, we

show the features of the root mark ⟨/s⟩ of sentences. We can see that the final punctuation

marks and final-position particles are automatically learned as modifiers of the root mark (i.e.,

of the root word of a sentence). In Table 7, we show an example of a special Chinese expression

on the Internet. The word “神马”, read as shén-mǎ, means “what” on the basis of similarity in

pronunciation to the original word shén-me. Our unsupervised data-driven approach reveals the

behaviors of this neologism, which is natural for a Chinese native speaker.

In Table 8, we show an example of a dependency tri-gram. The expression “有木有” (yǒu-

mù-yǒu) is also an Internet-based neologism, which means “to exist or not”, because the original
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Table 6 Dependency bi-grams for the root mark (⟨/s⟩) and some general Chinese words

bi-gram log-prob. bi-gram log-prob. bi-gram log-prob. bi-gram log-prob.

−0.520 −1.358 −2.278 −1.371

−1.098 −1.628 −2.755 −1.436

−1.235 −1.915 −2.892 −1.925

−1.928 −2.139 −3.058 −2.085

−1.955 −2.261 −3.262 −2.102

The top five highest estimates for each history (given o1 and h1 in (h0, o1, h1)) are shown. The h0 shown

here excludes UNK, ⟨/L⟩, ⟨/R⟩ and punctuation marks for lexical h0.

Table 7 Dependency bi-grams for a Chinese Inter-

net neologism “神马”

bi-gram log-prob. bi-gram log-prob.

−1.327 −0.972

−1.343 −1.343

−1.552 −1.532

−1.741 −1.803

−1.813 −1.832

In (h0, o1, h1), h1 = 神马, o1 = ⟨L⟩ or ⟨R⟩. The top

five highest estimates are shown.

Table 8 Dependency tri-grams for a Chinese

Internet neologism “有木有” and for

the corresponding standard expres-

sion “有没有”

bi-gram log-prob. bi-gram log-prob.

−0.713 −0.537

−0.736 −0.732

−0.840 −1.555

−0.957 −1.746

The estimates of all four possible structure pat-

terns of both expressions are shown.

expression “有没有” (yǒu-méi-yǒu) has a similar pronunciation in some dialects. We show all

four possible structure patterns for both of them. We can see that all of these structures have

relatively high estimates, which shows strong dependency relations. However, if we use a general

Chinese parser22, the character “木” is always treated as a noun due to its original meaning of

“wood”, and the tri-order relation of the expression “有木有” is not recognized.

In Figure 25, we show the best dependency structure given by the Viterbi algorithm for a

22 http://nlp.stanford.edu:8080/parser/index.jsp
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Fig. 25 Best dependency structure of the sentence “毎 道 菜 都 真心 好吃 呢。” generated by the

proposed approach

Fig. 26 Dependency structure of the sentence “毎 道 菜 都 真心 好吃 呢。” generated by the Stanford

Dependency Parser

sentence in the training set. Figure 26 is the dependency structure generated by the Stanford

Dependency Parser6.2. Although there are no neologisms in this sentence, the Chinese word

“真心” is a general word and ordinarily used as a noun or an adjective, meaning “sincerity” or

“sincere” respectively. However, it has recently been used as an adverb to express the meaning of

“really” in a slightly emphatic manner. This feature is also captured by our approach from train-

ing data and contextualized within the entire sentence structure, resulting in a correct analysis.

A standard parser cannot efficiently handle this type of flexible usage of general words.

7 Conclusion and Future Work

In this study, we focused on introducing sentence structure into language modeling. We

proposed a generative dependency N-gram language model, which extends the original N-gram

language model to include sentence dependency structures, as well as a definition of complete

sets for arbitrary order, which facilitates an unsupervised parameter estimation algorithm. The

experimental results demonstrate the applicability and the properties of the proposed approach.

We also applied a complete data-driven approach for lexical dependency feature extraction to

a textual microblog data set. The experimental results show that our approach can handle

non-standard linguistic phenomena in user-generated content.

In future, we will develop methods for parameter pruning and discounting to handle the
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overfitting problem. As the proposed dependency language model is intrinsically complex, we

also plan more fundamental simplifications. In addition, although our proposed algorithm is

unsupervised, the output of a trained parser, which would provide clear and lexical heuristics,

can be integrated in it. We plan to investigate this possibility and evaluate the performance

achieved by using linguistically motivated criteria.
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Appendix

A Calculation of the Estimation Algorithm

In Section 4.3, we provide a re-estimation method as an inside-outside algorithm. When the

order is restricted to two, as in (Lee and Choi 1997), the calculation of all the inside (β(·)) and
outside (α(·)) probabilities can be conducted on a CKY-wise triangle table. Specifically, the

inside probabilities are first calculated from small to large spans in a bottom-up way; then the

outside probabilities are calculated in a top-down way by using the calculated inside probabilities.

Because the proposed approach extends the dependency N-gram to an arbitrary order, a two-

dimensional triangle table is not sufficient. In general, the re-estimation of a model with N-order

lexical parameters needs an N-dimension table, which ceases to be intuitive.

A naive method of calculating the inside-outside probability of a sentence can be performed

by the pseudocode of Naive-Inside-Outside. More efficiently, we can first generate a process

list to record the processing order for all the necessary inside and outside probabilities of a sen-

tence, and then calculate them according to the process list. In practice, the process given in

Naive-Inside-Outside, which identifies the processing order, needs to execute only once, which

can be performed during pre-processing. The generation of the process list is shown by the pseu-

docode of Process-List. This code is basically identical to the process Naive-Inside-Outside;

instead of calculating, the “name” tokens (generated by Get-Tuple) of all the inside and outside

probabilities are recorded. For creating the process list, the calculation step of Inside-Outside is

trivial, because the calculation is found from the recorded “name” by using Get-Probability.
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Naive-Inside-Outside(Sentence)

1 calculate β(Set) according to Exp. (28)

2 repeat

3 for all inside probabilities β(Set) of Sentence

4 do� according to Exp. (24), Exp. (25)

5 if all β(Sub1), β(Sub2) on the right side are available

6 then calculate β(Set)

7 until all inside probabilities β(Set) are calculated

8 repeat

9 for all outside probabilities α(Set) of Sentence

10 do� according to Exp. (26) or Exp. (27)

11 if all α(Sup) on the right side are available

12 then calculate α(Set)

13 until all outside probabilities α(Set) are calculated

Inside-Outside(Sentence, ProcessList)

1 for i← 1 to length (ProcessList)

2 do Get-Probability(ProcessList[i])

Get-Probability(X, Y, Z)

1 return X (Y (Z)) according to Exp. (24), Exp. (25), Exp. (26), Exp. (27) or Exp. (28)

Process-List()

1 Process-List ← []

2 for all Seq(d) of Exp. (28)

3 do append Get-Tuple(β(Seq(d))) to Process-List

4 repeat

5 for all complete sets Set

6 do� according to Exp. (24) or Exp. (25)

7 if all Get-Tuple(β(Sub1)), Get-Tuple(β(Sub2)) ∈ Process-List

8 then append Get-Tuple(β(Set)) to Process-List

9 until Get-Tuple(β(Set)) ∈ Process-List for all Set

10 repeat

11 for all complete sets Set

12 do� according to Exp. (26) or Exp. (27)

13 if all Get-Tuple(α(Sup)) ∈ Process-List

14 then append Get-Tuple(α(Set)) to Process-List

15 until Get-Tuple(α(Set)) ∈ Process-List for all Set

16 return Process-List

Get-Tuple(X (Y (Z)))

1 return (X, Y, Z)
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