
1 MI and RIDF
Mutual Information (MI), I(x;y), compares the
probability of observing word x and word y
together (the joint probability) with the
probabilities of observing x and y independently
(chance).

I(x;y) = log (P(x,y) / P(x)P(y))

MI has been used to identify a variety of
interesting linguistic phenomena, ranging from
semantic relations of the doctor/nurse type to
lexico-syntactic co-occurrence preferences of the
save/from type (Church and Hanks, 1990).

Church and Gale (1995) proposed Residual

Inverse Document Frequency (RIDF), the
difference between the observed IDF and what
would be expected under a Poisson model for a
random word or phrase with comparable
frequency. RIDF is a variant of IDF, a standard
method for weighting keywords in Information
Retrieval (IR). Let D be the number of documents,
tf be the term frequency (what we call ''frequency''
in our field) and df be the document frequency (the
number of documents which contain the word or
phrase at least once). RIDF is defined as:

 Residual IDF ≡ observed IDF - predicted IDF

 = -log(df/D) +log(1-exp(-))

 = -log(df/D) +log(1-exp(-tf/D)).

RIDF is, in certain sense, like MI; both are the log
of the ratio between an empirical observation and
a chance-based estimate. Words or phrases with
high RIDF or MI have distributions that cannot be
attributed to chance. However, the two measures
look for different kinds of deviations from chance.
MI tends to pick out general vocabulary, the kind
of words one would expect to find in a dictionary,
whereas RIDF tends to pick out good keywords,
the kind of words one would not expect to find in
a dictionary. This distinction is not surprising
given the history of the two measures; MI, as it is
currently used in our field, came from
lexicography whereas RIDF came from
Information Retrieval.

In addition, it is natural to compute RIDF
for all substrings. This is generally not done for
MI, though there are many ways that MI could be
generalized to apply to longer ngrams. In the next
section, we will show an algorithm based on suffix

Using Suffix Arrays to Compute Term Frequency
and Document Frequency for All Substrings in a Corpus

Mikio Yamamoto
University of Tsukuba

1-1-1 Tennodai,
Tsukuba 305-8573, JAPAN

myama@is.tsukuba.ac.jp

Kenneth W. Church
AT&T Labs - Research

180 Park Avenue
Florham Park, NJ 07932, U.S.A

kwc@research.att.com

Abstract

Mutual Information (MI) and similar
measures are often used in corpus-based
linguistics to find interesting ngrams. MI
looks for bigrams whose term frequency (tf) is
larger than chance. Residual Inverse
Document Frequency (RIDF) is similar, but it
looks for ngrams whose document frequency
(df) is larger than chance. Previous studies
have tended to focus on relatively short
ngrams, typically bigrams and trigrams. In
this paper, we will show that this approach
can be extended to arbitrarily long ngrams.
Using suffix arrays, we were able to compute
tf, df and RIDF for all ngrams in two large
corpora, an English corpus of 50 million
words of Wall Street Journal news articles and
a Japanese corpus of 216 million characters of
Mainichi Shimbun news articles.

arrays for computing tf, df and RIDF for all
substrings in a corpus in O(NlogN) time.

In section 3, we will compute RIDF's for all
substrings in a corpus and compare and contrast
MI and RIDF experimentally for phrases in a
English corpus and words/phrases in a Japanese
corpus. We won't try to argue that one measure is
better than the other; rather we prefer to view the
two measures as mutually complementary.

2 Computing tf and df for all substrings
2.1 Suffix arrays
A suffix array is a data structure designed to make
it convenient to compute term frequencies for all
substrings in a corpus. Figure 1 shows an example
of a suffix array for a corpus of N=6 words. A
suffix array, s, is an array of all N suffixes,
pointers to substrings that start at position i and
continue to the end of the corpus, sorted
alphabetically. The following very simple C
function, suffix_array, takes a corpus as input and
returns a suffix array.

Nagao and Mori (1994) describe this
procedure, and report that it works well on their
corpus, and that it requires O(NlogN) time,
assuming that the sort step requires O (NlogN)
comparisons, and that each comparison requires
O(1) time. We tried this procedure on our two
corpora, and it worked well for the Japanese one,
but unfortunately, it can go quadratic for a corpus
with long repeated substrings, where strcmp takes
O(N) time rather than O(1) time. For our English
corpus, after 50 hours of cpu time, we gave up and
turned to Doug McIlroy's implementation
(http://cm.bell-labs.com/cm/cs/ who/doug/ssort.c)
of Manber and Myers' (1993) algorithm, which
took only 2 hours. For a corpus that would

otherwise go quadratic, the Manber and Myers'
algorithm is well worth the effort, but otherwise,
the procedure described above is simpler, and
often a bit faster.

 As mentioned above, suffix arrays were
designed to make it easy to compute term
frequencies (tf). If you want the term frequency of
"to be," you can do a binary search to find the first
and last position in the suffix array that start with
this phrase, i and j, and then tf("to be") = j-i+1. In
this case, i=5 and j=6, and consequently, tf("to
be")=6-5+1=2. Similarly, tf("be")= 2-1+1 = 2, and
tf("to")=6-5+1=2. This straightforward method of
computing tf requires O(logN) string comparisons,
though as before, each string comparison could
take O (N) time. There are more sophisticated
algorithms that take O(logN) time, even for
corpora with long repeated substrings.

A closely related concept is lcp (longest
common prefix). Lcp is a vector of length N,
where lcp[i] indicates the length of the common
prefix between the ith suffix and the i+1st suffix in
the suffix array. Manber and Myers (1993) showed
how to compute the lcp vector in O(NlogN) time,
even for corpora with long repeated substrings,
though for many corpora, the complications
required to avoid quadratic behavior are
unnecessary.

2.2 Classes of substrings
Thus far we have seen how to compute tf for a
single ngram, but how do we compute tf and df for
all ngrams? There are N(N+1)/2 substrings in a
text of size N. If every substring has a different tf
and df, the counting algorithm would require at
least quadratic time and space. Fortunately many
substrings have the same tf and the same df. We

 Figure 1: An example of a Suffix Array with lcp's

be
be or not to be
not to be
or not to be
to be
to be or not to be

s[1]

s[2]

s[3]

s[4]

s[5]

s[6]

1 2 3 4 ...

 1

 0

 0

 0

 2

 0

lcp

Corpus: "to be or not to be" Alphabet: {to, be, or, not}

Lcp's are denoted by bold vertical lines as well as the lcp table.

will cluster the N(N+1)/2 substrings into at most
2N-1 classes and compute t f and df over the
classes. There will be at most N distinct values of
RIDF.

Let <i,j> be an interval on the suffix array:
{s[i], s[i+1], ..., s[j]}. We call the interval LCP-
delimited if the lcp's are larger inside the interval
than at its boundary:

min(lcp[i], lcp[i+1], ..., lcp[j-1])

 > max(lcp[i-1], lcp[j]) (1)

In Figure 1, for example, the interval <5,6> is
LCP-delimited, and as a result, tf("to") = tf("to be")
= 2, and df("to")=df("to be").

The interval <5,6> is associated with a class
of substrings: "to" and "to be." Classes will turn
out to be important because all of the substrings in
a class have the same tf (property 1) and the same
df (property 2). In addition, we will show that
classes partition the set of substrings (property 3)
so that we can compute tf and df on the classes,
rather than substrings. Doing so is much more
efficient because there many fewer classes than
substrings (property 4).

Classes of substrings are defined to be the
(not necessarily least) common prefixes in an
interval. In Figure 1, for example, both "to" and
"to be" are common prefixes throughout the
interval <5,6>. That is, every suffix in the interval
<5,6> starts with "to," and every suffix also starts
with "to be". More formally, we define
class(<i,j>) as: {s[i]m| LBL<m≤SIL}, where s[i]m
is a substring (the first m characters of s[i]),
LBL(longest boundary lcp) is the right hand of (1)
and SIL (shortest interior lcp) is the left hand side*)

of (1). In Figure 1, for example, SIL(<5,6>) =
min(lcp[5]) = 2, LBL(<5,6>) = max(lcp[4], lcp[6])
=0, and class(<5,6>) = {s[5]m | 0<m≤2} = {"to",
"to be"}.

 Figure 2 shows six LCP-delimited intervals
and the LBL and SIL of <2,4>. For <2,4>, the
bounding lcp's are lcp[1] = 2 and l c p[4]=3
(LBL=3), and the interior lcp's are lcp[2]=4 and
lcp[3]=6 (SIL=4). The interval <2,4> is LCP-
delimited, because L B L<SIL. Class(<2,4>)=
{s[2]m|3<m≤4} = {aacc}. The interval <3,3> is

LCP-delimited because SIL is infinite and LBL=6.
The interval <2,3> is not LCP-delimited because
SIL is 4 and LBL is 6 (LBL>SIL).

By construction, the suffixes within the
interval <i,j> all start with the substrings in
class(<i,j>), and no suffixes outside this interval
start with these substrings. As a result, if s1 and s2

are two substrings in class(<i,j>) then

Property 1: tf(s1) = tf(s2) = j-i+1

and

Property 2: df(s1) = df(s2).

The calculation of df is more complicated than tf,
and will be discussed in section 2.4.

It is not uncommon for an LCP-delimited
interval to be nested within another. In Figure 2,
for example, the interval <3,4> is nested within
<2,4>. The computation of df in section 2.4 will
take advantage of a very convenient nesting
property. Given two LCP-delimited intervals,
either one is nested within the other (e.g., <2,4>
and <3,4>), or one precedes the other (e.g., <2,2>
and <3,4>), but they cannot overlap. Thus, for
example, the intervals <1,3> and <2,4> cannot
both be LCP-delimited because they overlap.
Because of this nesting property, it is possible to
express the df of an interval recursively in terms of
its constituents or subintervals.

As mentioned above, we will use the
following partitioning property so that we can

*) SIL(<i,i>) is defined to be infinity, and consequently,
all intervals <i,i> are LCP-delimited, forall i.

Figure 2: Examples of intervals and classes

a a b b c c d ...
a a c c d d e ...
a a c c e e f ...
a a c c e e g...
a a c d e e f ...
? ? ...

s[1]

s[2]

s[3]

s[4]

s[5]

s[6]

1 2 3 4 5 6 7 ...

Bounding lcps, LBL, SIL, Interior lcps of <2, 4>

Doc-id
382

84987
6892

382
2566

<2,4>

Vertical lines denote lcps. Gray area denotes endpoints
of substrings in class(<2,4>).

LCP-delimited
 interval Class

<2,4> {aacc}
<3,4> {aacce, aaccee}
<1,1> {aab, aabb, aabbc, ...}
<2,2> {aaccd, aaccdd, ...}
<3,3> {aacceef, ...}
<4,4> {aacceeg, ...}

LBL SIL tf

2 4 3
3 6 2
2 infinity 1
4 infinity 1
6 infinity 1
6 infinity 1

compute tf and df on the classes rather than on the
substrings.

Property 3: the classes partition the set of
all substrings in a text.

There are two parts to this argument: every
substring belongs to at most one class (property
3a), and every substring belongs to at least one
class (property 3b).

Demonstration of property 3a (proof by
contradiction): Suppose there is a substring, s, that
is a member of two classes: class(<i,j>) and
class(<u,v>). There are three possibilities: one
interval precedes the other, they are property
nested or they overlap. The only interesting case is
the nesting case. Suppose without loss of
generality that <u,v> is nested within <i,j> as in
Figure 3. Because <u,v> is LCP-delimited, there
must be a bounding lcp of <u,v> that is smaller
than any lcp within <u,v>. This bounding lcp must
be within <i,j>, and as a result, class(<i,j>) and
class(<u,v>) must be disjoint. Therefore, s cannot
be in both classes.

Demonstration of property 3b (constructive
argument): Let s be an arbitrary substring in the
corpus. There will be at least one suffix in the
suffix array that starts with s. Let i be the first
such suffix and let j be the last such suffix. By
construction, the interval <i,j> is LCP-delimited
(LBL(<i,j>) < |s| and SIL(<i,j>) ≥ |s|), and s is an
element of class(<i,j>).

Finally, as mentioned above, computing
over classes is much more efficient than
computing over the substrings themselves because
there are many fewer classes (at most 2N-1) than
substrings (N(N+1)/2).

Property 4: There are N classes with tf=1
and at most N-1 classes with tf > 1.

The first clause is relatively straightforward.
There are N intervals <i,i>. These are all and only
the intervals with tf=1. By construction, these
intervals are LCP-delimited.

To argue the second clause, we will make
use of a uniqueness property: an LCP-delimited
interval <i,j> can be uniquely determined by its
SIL and a representative element k (i ≤k<j).
Suppose there were two distinct intervals, <i,j>
and <u ,v>, with the same S I L , SIL(<i,j>)=
SIL(<u,v>), and the same representative, i≤k<j and
u≤k<v. Since they share a common representative,
k, the two intervals must overlap. But since they
are distinct, there must be a distinguishing
element, d, that is in one but not the other. One of
these distinguishing elements, d, would have to be
a bounding lcp in one and an interior lcp in the
other. But then the two intervals couldn't both be
LCP-delimited.

Given this uniqueness property, we can
determine the N-1 upper bound on the number of
LCP-delimited intervals by considering the N-1
elements in the lcp vector. Each of these elements,
lcp[k], has the opportunity to become the SIL of an
LCP-delimited interval <i,j> with a representative
k. Thus there could be as many as N -1 LCP-
delimited intervals (though there could be fewer if
some of the opportunities don't work out).
Moreover, there couldn't be any more intervals
with tf>1, because if there were one, its SIL should
have been in the lcp vector. (Note that this lcp
counting argument excludes intervals with tf=1
discussed above, because their SILs need not be in
the lcp vector.)

From property 4, it follows that there are at
most N distinct values of RIDF. The N intervals
<i,i> have just one RIDF value since tf=df=1 for
these intervals. The other N-1 intervals could have
another N-1 RIDF values.

In summary, the four properties taken
collectively make it practical to compute tf, df and
RIDF over a relatively small number of classes; it
would have been prohibitively expensive to
compute these quantities directly over the
N(N+1)/2 substrings.

 Figure 3: An example of nested intervals

Suffix Array

<
i,j

>

SIL of <i,j>

This is an interior lcp of <i,j>
and the LBL of <u,v>.

<
u,

v>

s[i]
s[u]

s[v]
s[j]

2.3 Calculating classes using Suffix Array
This section will describe a single pass procedure
for computing classes. Since LCP-delimited
intervals obey a convenient nesting property, the
procedure is based on a push-down stack. The
procedure outputs 4-tuples, <s[i],LBL,SIL,tf>, one
for each LCP-delimited interval. The stack
elements are pairs (x,y), where x is an index,
typically the left edge of a candidate LCP-
delimited interval, and y is the SIL of this
candidate interval. Typically, y=lcp[x], though not
always, as we will see in Figure 5.

The algorithm sweeps over the suffixes in
suffix array s[1..N] and their lcp[1..N] (lcp[N]=0)
successively. While lcp's of suffixes are
monotonically increasing, indexes and lcp's of the
suffixes are pushed into a stack. When it finds the
i-th suffix whose lcp[i] is less than the lcp on the
top of the stack, the index and lcp on the top are
popped off the stack. Popping is repeated until the
lcp on the top becomes less than the lcp[i].

A stack element popped out generates a
class. Suppose that a stack element composed of
an index i and lcp[i] is popped out by lcp[j]. Lcp[i]
is used as the SIL. The LBL is the lcp on the next
top element in the stack or lcp[j]. If the next top
lcp will be popped out by lcp[j], then the algorithm
uses the next top lcp as the LBL, else it uses the
lcp[j]. Tf is the offset between the indexes i and j,
that is, j-i+1.

Figure 4 shows the detailed algorithm for

computing all classes with tf > 1. If classes with tf
= 1 are needed, we can easily add the line to
output those into the algorithm. The expressions,
push(x,y) and pop(x,y), operate on the stack in the
obvious way, but note that x and y are inputs for
push and outputs for pop. The expression, top(x,y),
is equivalent to pop(x,y) followed by push(x,y); it
reads the top of the stack without changing the
stack pointer.

As mentioned above, the stack elements are
typically pairs (x,y) where y=lcp[x], but not
always. Pairs are typically pushed onto the stack
by line 6, push (i , lcp[i]), and consequently,
y=lcp[x], in many cases, but some pairs are pushed
on by line 15. Figure 5 (a) shows the typical case
with the suffix array in Figure 2. At this point,
i=3 and the stack contains 4 pairs, a dummy
element (-1, -1), followed by three pairs generated
by line 6: (1, lcp[1]), (2, lcp[2]), (3, lcp[3]). In
contrast, Figure 5 (b) shows an atypical case. In
between snapshot (a) and snapshot (b), two LCP-
delimited intervals were generated, <s[3], 4, 6, 2>
and <s[2], 3, 4, 3>, and then the pair (2, 3) was
pushed onto the stack by line 15, push(index1,
lcp[i]), to capture the fact that there is a candidate
LCP-delimited interval starting at index1=2,
spanning past the representative element i=4, with
an SIL of lcp[i=4].

2.4 Computing df for all classes
This section will extend the algorithm in Figure 4
to include the calculation of df. Straightforwardly
computing df independently for each class would
require at least quadratic time, because the
program must check document id's for all
substrings (N at most) in all classes (N-1 at most).
Instead of this, we will take advantage of the
nesting property of intervals. The df for one

Create and clear stack.
Push (-1, -1) (dummy).
Repeat i = 1, ... , N do
 top (index1, lcp1).
 if lcp[i] > lcp1 then
 push (i, lcp[i]).
 else
 while lcp[i] ≤ lcp1 do
 pop(index1, lcp1)
 top (index2, lcp2)
 if lcp[i] ≤ lcp2 then
 output <s[index1], lcp2, lcp1, i-index1+1>
 else
 output <s[index1], lcp[i], lcp1, i-index1+1>
 push (index1, lcp[i])
 lcp1 = lcp2.

 Figure 4: An algorithm for computing all classes

Figure 5: Snapshots of the stack

(3, 6)
(2, 4)
(1, 2)
(-1, -1)

(2, 3)
(1, 2)
(-1, -1)

index lcp

Popped
out

dummy

s[4]
Pushed

Note!

(a) end of processing s[3] (b) end of processing s[4]

interval can be computed recursively in terms of
its constituents (nested subintervals), avoiding
unnecessary recomputation.

The stack elements in Figure 5 is augmented
with two additional counters: (1) a df counter for
summing the df's over the nested subintervals and
(2) a duplication counter for adjusting for
overcounting documents that are referenced in
multiple subintervals. The df for an interval is
simply the difference of these two counters, that is,
the sum of the df's of the subintervals, minus the
duplication. A C code implementation can be
found at
http://www.milab.is.tsukuba.ac.jp/~myama/tfdf/tfdf.c.

The d f counters are relatively
straightforward to implement. The crux of the
problem is the adjustment for duplication. The
adjustment makes use of a document link table, as
illustrated in Figure 6. The left two columns
indicate that suffixes s[101], s[104] and s[107] are

all in document 382, and that several other suffixes
are also in the same documents. The third column
links together suffixes that are in the same
document. Note, for example, that there is a
pointer from suffix 104 to 101, indicating that
s[104] and s[101] are in the same document. The
suffixes in one of these linked lists are kept sorted
by their order in the suffix array. When the
algorithm is processing s[i], the algorithm searches
the stack to find the suffix, s[k], with the largest k
such k≤ i and s[i] and s [k] are in the same
document. This search can be performed in
O(logN) time.

Figure 7 shows the LCP-delimited intervals
in a suffix array and four suffixes included in the
same document. I1 has four immediate constituents
of intervals. S[j] is included in the same document
of s[i]. Count for the document of s[j] will be
duplicated at computing df of I1. At the point of
processing s[j], the algorithm will increment
duplication-counter of I1 to cancel df count of s[j].
As the same way, df count of s[k] has to canceled
at computing df of I1.

Figure 8 shows a snapshot of the stack after
processing s[4] in Figure 2. Each stack element is
a 4-tuple of the index of suffix array, lcp, df-
counter and duplication-counter, (i, lcp, df, dc) .
Figure 2 shows s[1] and s[4] are in the same
document. Looking up the document link table,
the algorithm knows s[1] is the nearest suffix
which is in the same document of s[4]. The
duplication-counter of the element of s[1] is
incremented. The duplication of counting s[1] and
s[4] for the class generated by s[1] will be avoided
using this duplication-counter.

At some processing point, the algorithm
uses only a part of the document link table. It

 Figure 6: An example of document link table

Suffix

s[101]
s[102]
s[103]
s[104]
s[105]
s[106]
s[107]
s[108]

382
84987
6892
382

2566
6892
382

84987

66
72
21

101
12

103
104
102

Document
 id

Document
link (index)

Figure 8: A snapshot of Figure 9: Nearest indexes

the stack in df computing of documents

(2, 3, 3, 0)
(1, 2, 1, 1)
(-1, -1, - , -)

index ...
 382 4
...
 6892 3
...
84987 2

duplication
 counter

df counter

lcp Nearest
 indexDoc-id

 Figure 7: Df relations among an interval
 and its constituents

df-counter

df-counter

df-counter

df-counter

df-counter

dup-counter

dup-counter

+1

+1

Σ
+1

Suffix Array

in
de

x

characters (suffix)

endpoints of substrings in the class of the interval

Interval

s[i]

s[j]

s[k]

s[l]

document links

I1

I2

I3 I4

I5

I6

I7 I8 I9

I10

I11

-

+++
+

needs only the nearest index on the link, but not
the whole of the link. So we can compress the link
table to dynamic one in which an entry of each
document holds the nearest index. Figure 9 shows
the nearest index table of document after
processing s[4].

The final algorithm to calculate all classes
with tf and df takes O(NlogN) time and O(N) space
in the worst case.

3 Experimental results
3.1 RIDF and MI for English and Japanese

We computed all RIDF's for all substrings of two
corpora, Wall Street Journal of ACL/DCI in
English (about 50M words and 113k articles) and
Mainichi News Paper 1991-1995 (CD-Mainichi
Shimbun 91-95) in Japanese (about 216M
characters and 436k articles) , using the algorithm
in the previous section. In English, we tokenized
the text into words, delimited by white space,
whereas in Japanese we tokenized the text into
characters (usually 2-bytes) because Japanese text
has no word delimiter such as white space.

It took a few hours to compute all RIDF's
using the suffix array. It takes much longer to
compute the suffix array than to compute tf and df.
We ignored substrings with tf < 10 to avoid noise,
resulting in about 1.6M English phrases (#classes
= 1.4M) and about 15M substrings of Japanese
words/phrases (#classes = 10M).

MI of the longest substring of each class was
also computed by the following formula.

MI x z
p x z

p x p z
() log

()
() (|)

y
y

y y
=

Where x zy is a phrase or string, x and z are a
word or a character and y is a sub-phrase or sub-
string.

3.2 Little correlation between RIDF and MI

We are interested in comparing and contrasting
RIDF and MI. Figure 10 (a) plots RIDF vs MI for
phrases in WSJ (length > 1), showing little, if any,
correlation between RIDF and MI. Figure 10 (b)
also plots RIDF vs MI but this time the corpus is in
Japanese and the words were manually selected by
the newspaper to be keywords. Both Figures 10
(a) and 10 (b) suggest that RIDF and MI are

largely independent. There are many substrings
with a large RIDF value and a small MI, and vice
versa.

MI is very different from RIDF. Both pick
out interesting phrases, but phrases with large MI
are interesting in different ways from phrases with
large RIDF. Consider the phrases in Table 1,
which all contain the word "having." These
phrases have large MI values and small RIDF
values. A lexicographer such as Patrick Hanks,
who works on dictionaries for learners, might be
interested in these phrases because these kinds of
collocations tend to be difficult for non-native
speakers of the language. On the other hand, these
kinds of collocations are not very good keywords.

Table 2 is a random sample of phrases
containing the substring /Mr/, sorted by RIDF. The
ones at the top of the list tend to be better
keywords than the ones further down.

Table 3.A and 3.B show a few phrases
starting with /the/, sorted by MI (Table 3.A) and
sorted by RIDF (Table 3.B). Most of the phrases
are interesting in one way or another, but those at
the top of Table 3.A tend to be somewhat

Table 1: phrases with 'having'
 tf df RIDF MI Phrase

 18 18 -0.0001 10.4564 admits to having
 14 14 -0.0001 9.7154 admit to having
 25 23 0.1201 8.8551 diagnosed as having
 20 20 -0.0001 7.4444 suspected of having
301 293 0.0369 7.2870 without having
 15 13 0.2064 6.9419 denies having
 59 59 -0.0004 6.7612 avoid having
 18 18 -0.0001 5.9760 without ever having
 12 12 -0.0001 5.9157 Besides having
 26 26 -0.0002 5.7678 denied having

 (a) English phrases (b) Japanese strings
 Figure 10: Scatter plot of RIDF and MI

0 10 20

0

1

2

MI

R
ID

F

R
ID

F

-10 0 10 20

0

1

2

3

MI
Table5

Table 2: phrases with 'Mr'
 tf df RIDF MI Phrase

 11 3 1.8744 0.6486 . Mr. Hinz
 18 5 1.8479 6.5583 Mr. Bradbury
 51 16 1.6721 6.6880 Mr. Roemer
 67 25 1.4218 6.7856 Mr. Melamed
 54 27 0.9997 5.7704 Mr. Burnett
 16 9 0.8300 5.8364 Mrs. Brown
 11 8 0.4594 1.0931 Mr. Eiszner said
 53 40 0.4057 0.2855 Mr. Johnson .
 21 16 0.3922 0.1997 Mr. Nichols said .
 13 10 0.3784 0.4197 . Mr. Shulman
176 138 0.3498 0.4580 Mr. Bush has
 13 11 0.2409 1.5295 to Mr. Trump's
 13 11 0.2409 -0.9301 Mr. Bowman ,
 35 32 0.1291 1.1673 wrote Mr.
 12 11 0.1255 1.7330 M r. Lee to
 22 21 0.0670 1.4293 facing Mr.
 11 11 -0.0001 0.7004 Mr. Poehl also
 13 13 -0.0001 1.4061 inadequate . " Mr.
 16 16 -0.0001 1.5771 The 41-year-old Mr.
 19 19 -0.0001 0.4738 14 . Mr.
 26 26 -0.0002 0.0126 in November . Mr.
 27 27 -0.0002 -0.0112 " For his part , Mr.
 38 38 -0.0002 1.3589 . AMR ,
 39 39 -0.0002 -0.3260 for instance , Mr.

Table 3.C: Concordance of the phrase "the Basic Law"
The first col. is the token id and the last col. is the doc id (position of the start word in the corpus)

 2229521: line in the drafting of the Basic Law that will determine how Hon 2228648
 2229902: s policy as expressed in the Basic Law -- as Gov. Wilson's debut s 2228648
 9746758: he U.S. Constitution and the Basic Law of the Federal Republic of 9746014
11824764: any changes must follow the Basic Law , Hong Kong's miniconstitut 11824269
33007637: sts a tentative draft of the Basic Law , and although this may be 33007425
33007720: the relationship between the Basic Law and the Chinese Constitutio 33007425
33007729: onstitution . Originally the Basic Law was to deal with this topic 33007425
33007945: wer of interpretation of the Basic Law shall be vested in the NPC 33007425
33007975: tation of a provision of the Basic Law , the courts of the HKSAR { 33007425
33008031: interpret provisions of the Basic Law . If a case involves the in 33007425
33008045: tation of a provision of the Basic Law concerning defense , foreig 33007425
33008115: etation of an article of the Basic Law regarding " defense , forei 33007425
33008205: nland representatives of the Basic Law Drafting Committee fear tha 33007425
33008398: e : Mainland drafters of the Basic Law simply do not appreciate th 33007425
33008488: pret all the articles of the Basic Law . While recognizing that th 33007425
33008506: y and power to interpret the Basic Law , it should irrevocably del 33007425
33008521: pret those provisions of the Basic Law within the scope of Hong Ko 33007425
33008545: r the tentative draft of the Basic Law , I cannot help but conclud 33007425
33008690: d of being guaranteed by the Basic Law , are being redefined out o 33007425
33008712: uncilor , is a member of the Basic Law Drafting Committee . <EOA> 33007425
39020313: sts a tentative draft of the Basic Law , and although this may be 39020101
39020396: the relationship between the Basic Law and the Chinese Constitutio 39020101
39020405: onstitution . Originally the Basic Law was to deal with this topic 39020101
39020621: wer of interpretation of the Basic Law shall be vested in the NPC 39020101
39020651: tation of a provision of the Basic Law , the courts of the HKSAR { 39020101
39020707: interpret provisions of the Basic Law . If a case involves the in 39020101
39020721: tation of a provision of the Basic Law concerning defense , foreig 39020101
39020791: etation of an article of the Basic Law regarding " defense , forei 39020101
39020881: nland representatives of the Basic Law Drafting Committee fear tha 39020101
39021074: e : Mainland drafters of the Basic Law simply do not appreciate th 39020101
39021164: pret all the articles of the Basic Law . While recognizing that th 39020101
39021182: y and power to interpret the Basic Law , it should irrevocably del 39020101
39021197: pret those provisions of the Basic Law within the scope of Hong Ko 39020101
39021221: r the tentative draft of the Basic Law , I cannot help but conclud 39020101
39021366: d of being guaranteed by the Basic Law , are being redefined out o 39020101
39021388: uncilor , is a member of the Basic Law Drafting Committee . <EOA> 39020101

Table 3.A: Worse Keywords
 tf df RIDF MI Phrase
11 11 -0.0001 11.0968 the up side
73 66 0.1450 9.3222 the will of
16 16 -0.0001 8.5967 the sell side
17 16 0.0874 8.5250 the Stock Exchange of
16 15 0.0930 8.4617 the buy side
20 20 -0.0001 8.4322 the down side
55 54 0.0261 8.3287 the will to
14 14 -0.0001 8.1208 the saying goes
15 15 -0.0001 7.5643 the going gets

Table 3.B: Better Keywords
 tf df RIDF MI Phrase
37 3 3.6243 2.2561 the joint commission
66 8 3.0440 3.5640 the SSC
55 7 2.9737 2.0317 the Delaware &
37 5 2.8873 3.6492 the NHS
22 3 2.8743 3.3670 the kibbutz
22 3 2.8743 4.1142 the NSA's
29 4 2.8578 4.1502 the DeBartolos
36 5 2.8478 2.3061 the Basic Law
21 3 2.8072 2.2983 the national output

idiomatic (in the WSJ domain) whereas those at
the top of Table 3.B tend to pick out specific
stories or events in the news. For example, the
phrase, "the Basic Law," selects for stories about
the British handover of Hong Kong to China, as
illustrated in Table 3.C.

Table 4 shows a number of phrases with
high MI containing common prepositions. The
high MI indicates an interesting association, but
again most of them are not good keywords, though
there are a few exceptions such as "Just for Men,"
a well-known brand name.

RIDF and MI for Japanese substrings tend to
be similar. Substrings with both high RIDF and MI
tend to be good keywords such as (merger),

 (stock certificate), (dictionary), (wireless)

and so on. Substrings with both low RIDF and MI
tend to be poor keywords such as
(current regular-season game) and meaningless
fragments such as (??). Table 5 shows
examples where MI and RIDF point in opposite
directions (rectangles in Figure 10 (b)). Words
with low RIDF and high MI tend to be general
vocabulary (often written in Kanji characters). In
contrast, words with high RIDF and low MI tend
to be domain specific words such as loan words
(often written in Katakana characters). MI is high
for words in general vocabulary (words found in
dictionary) and RIDF is high for good keywords
for IR.

3.3 Word extraction
Sproat and Shih (1990) found MI to be useful for
word extraction in Chinese. We performed the
following experiment to see if both MI and RIDF
are useful for word extraction in Japanese.

We extracted four random samples of 100
substrings each. The four samples cover all four
combinations of high and low RIDF and high and
low MI, where high is defined to be in the top
decile and low is defined to be in the bottom
decile. Then we manually scored each sample
substring using our own judgment as a good (the
substring is a word) or bad the substring is not a
word) or gray (the judge is not sure). The results
are presented in Table 6, which shows that

General vocabulary
General vocab., Kanji
General vocabulary
Kanji character
Kanji character

 (huge)
 (passive)
(determination)

(native full name)

(native full name)

(native last name)
SUN (company name)

(foreign name)
(brush)

 (sofa)

Kanji character
English character
Katakana character
Hiragana character
Loan word, Katakana

FeaturesSubstringsMIRIDF

 Table 5: Examples of keywords
 with interesting RIDF and MI

 tf df RIDF MI Phrase with 'for'
14 14 -0.0001 14.5587 feedlots for fattening
15 15 -0.0001 14.4294 error for subgroups
12 12 -0.0001 14.1123 Voice for Food
10 5 0.9999 13.7514 Quest for Value
12 4 1.5849 13.7514 Friends for Education
13 13 -0.0001 13.6803 Commissioner for Refugees
23 21 0.1311 13.6676 meteorologist for Weather
10 2 2.3219 13.4009 Just for Men
10 9 0.1519 13.3591 Witness for Peace
19 16 0.2478 12.9440 priced for reoffering

 tf df RIDF MI Phrase with 'by'
11 11 -0.0001 12.8665 piece by piece
13 13 -0.0001 12.5731 guilt by association
13 13 -0.0001 12.4577 step by step
15 15 -0.0001 12.4349 bit by bit
16 16 -0.0001 11.8276 engineer by training
61 59 0.0477 11.5281 side by side
17 17 -0.0001 11.4577 each by Korea's
12 12 -0.0001 11.3059 hemmed in by
11 11 -0.0001 10.8176 dictated by formula
20 20 -0.0001 10.6641 70%-owned by Exxon

 tf df RIDF MI Phrase with 'on'
 11 5 1.1374 14.3393 Terrorist on Trial
 11 10 0.1374 13.1068 War on Poverty
 13 12 0.1154 12.6849 Institute on Drug
 16 16 -0.0001 12.5599 dead on arrival
 12 12 -0.0001 11.5885 from on high
 12 12 -0.0001 11.5694 knocking on doors
 22 18 0.2894 11.3317 warnings on cigarette
 11 11 -0.0001 11.2137 Subcommittee on Oversight
 17 12 0.5024 11.1847 Group on Health
 22 20 0.1374 11.1421 free on bail

 tf df RIDF MI Phrase with 'of'
 11 10 0.1374 16.7880 Joan of Arc
 12 5 1.2630 16.2177 Ports of Call
 16 16 -0.0001 16.0725 Articles of Confederation
 14 13 0.1068 16.0604 writ of mandamus
 10 9 0.1519 15.8551 Oil of Olay
 11 11 -0.0001 15.8365 shortness of breath
 10 9 0.1519 15.6210 Archbishop of Canterbury
 10 8 0.3219 15.3454 Secret of My
 12 12 -0.0001 15.2030 Lukman of Nigeria
 16 4 1.9999 15.1600 Days of Rage

Table 4: Phrases with prepositions

substrings with high scores in both dimensions are
more likely to be words than substrings that score
high in just one dimension. Conversely, substrings
with low scores in both dimensions are very
unlikely to be words.

3.4 Case study: Names
We also compared RIDF and MI for people's
names. We made a list of people's names from
corpora using simple heuristics. A phrase or
substring is accepted as a person's name if English
phrase starts with the title 'Mr.' 'Ms.' or 'Dr.' and is
followed by a series of capitalized words. For
Japanese, we selected phrases in the keyword list
ending with ' ' (-shi), which is roughly the
equivalent of the English titles 'Mr.' and 'Ms.'

Figure 11 plots RIDF and MI for names in
English (a) and Japanese (b) with t f ≥ 10,
respectively. Figure 11 (a) shows that MI has a
more limited range than RIDF, suggesting that
RIDF may be more effective with names than MI.
The English name 'Mr. From' is a particularly

interesting case, since both 'Mr.' and 'From' is a
stop word. In this case, the RIDF was large and the
MI was not.

The Japanese names in Figure 11 (b) split
naturally at RIDF = 0.5. Japanese names with
RIDF below 0.5 are different from names after 0.5.
The group whose RIDF is under 0.5 included first
name and full name (first and last name) at rate of
90% and another group whose RIDF is up to 0.5
included only last name at rate of 90%. The reason
of this separation is that full name (and first name
as a substring of full name) appears once in the
beginning of the document, but last name is
repeated as a reference in the article. Recall that
RIDF tends to give higher value to substrings
which appear many times in a few documents. In
summary, RIDF can discriminate difference of
some words which cannot be done by MI.

5 Conclusion
We showed that RIDF is efficiently and naturally
scalable to long phrases or substrings. RIDF for all
substrings in a corpus can be computed using the
algorithm which computes tf's and d f's for all
substrings based on Suffix Array. It remains an
open question how to do this for MI. We found
that RIDF is useful for finding good keywords,
word extraction and so on. The combination of MI
and RIDF is better than either by itself. RIDF is
like MI, but different.

References
Church, K. and P. Hanks (1990) Word association

norms, mutual information, and lexicography.
Computational Linguistics, 16:1, pp. 22 - 29.

Church, K. and W. Gale (1995) Poisson mixtures.
Natural Language Engineering, 1:2, pp. 163 - 190.

Manber, U. and G. Myers (1993) Suffix array: A new
method for on-line string searches. SIAM Journal
on Computing, 22:5, pp. 935 - 948.
http://glimpse.cs.arizona.edu/udi.html

Nagao, M. and S. Mori (1994) A new method of n-gram
statistics for large number of n and automatic
extraction of words and phrases from large text data
of Japanese, Coling-94, pp.611-615.

Sproat, R and C. Shih (1990) A statistical method for
finding word boundaries in Chinese text. Computer
Processing of Chinese and Oriental Languages,
Vol.4, pp. 336 - 351.

 Table 6: RIDF and MI are complementary

0-8%4-13%3-18%

11-35%38-55%29-51%

2-11%20-44%---

RIDF
(low 10%)

RIDF
(high 10%)

All RIDF

MI
(low 10%)

MI
(high 10%)All MI

Each cell is computed over a sample of 100
examples. The smaller values are counts of 'good'
words and the larger values, 'not bad' words ('good'
and 'gray' words). Good or 'not bad' word ratio of
pairs of characters with high MI is 51-76%.

 (a) English names (b) Japanese names
 Figure 11: MI and RIDF of people’s names

-4 0 4 8 12
0

1

2

3

4

5

MI

R
ID

F

-8 -4 0 4 8 12

0

1

2

3

4

MI

R
ID

F

