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Background & Research goal (1/2)

@ To achieve intelligent machines, we require large
amounts of several types knowledge.

@ In previous research (e.g. [Lenat1995][Stork1999]),
much of the knowledge 1s constructed manually. It is
costly due to the scale of required knowledge.

@ Automatic knowledge acquisition from document
collections

Document collections Knowledge base



Background & Research goal (2/2)

@ Knowledge acquisition of causal relations

@ Refer to an event that causes another event

mp Someone Drinks water

Someone is thirsty

It rains hard == Flooding occurs

@ Key 1dea : use connective markers as clues

The laundry dried well because it was sunny.

. ]

It is sunny

w=p-| The laundry dries well 'B‘A
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Example of utterance understanding

4 samuku-nai-desu-ka?

(It’s cold here.)

utterance’s
goal

knowledge of means
causal relation




Typology of causal relations (1/5)

@ Acquire 4 types of causal relations
between 2 events following [Allen 1993]

cause effect precond(ition) means



Typology of causal relations (2/5)

- cause relation -

non-volitional state of affairs non-volitional state of affairs

\ /

cause ({1t 1s sunny}, {laundry dries well})



Typology of causal relations (3/5)

- effect relation -

agent’s volitional action

~.

effect ({someone destroys mangrove swamps},
{flooding occurs})

N

non-volitional state of affairs



Typology of causal relations (4/5)

non-volitional state of affairs
precond ({someone has a driving license},
{someone drives a car})

'\

agent’s volitional action

agent’s volitional action

T~

means ({someone goes to the ticket office},
{someone buys a ticket})

“\

agent’s volitional action



Typology of causal relations (5/5)

Act : agent’s volitional action
SOA : non-volitional state of affairs

Causal_rel(arg1, arg2) example

cause ({it is sunny},

{laundry dries well})
effect ({someone destroys mangrove swamps},

{flooding occurs})
precond ({someone has a driving license},

{someone drives a car})
means ({someone goes to the ticket office},

{someone buys a ticket})

cause ( SOA, SOA )

effect (Act, SOA)

precond (SOA, Act)

means ( Act, Act)

7

.. sufficient conditions described later
necessary condition

|1 —
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using newspaper articles




Key 1dea

@Use connective markers as clues

The laundry dried well today because it was sunny.

. 1

cause ({1t 1s sunny }, {laundry dries well })

a5




Problem

@ Different types of causal relations are expressed
with the same marker.

The laundry dried well today because it was sunny.

‘ cause ({it is sunny}; {1aundry dries well})

We need to create a computational model
to identify which type of causal relation
can be acquired from a given sentence.

N
‘ means ({Mary uses a tumble dryer},
{she dries the laundry quickly})
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Step 1

@ Selected fame as our target

@ Used frequently and

@ Typically used to express causal relations

tame |(because)| 76 087|| kara |(because)| 10 209

fo (when/if) | 56 549 || node | (because)| 9 994

reba (1f) 48 606| | nara (1f) 7 598

nagara | (while) | 13 796|| tara (if) 6 027

noni (but) 2917
From Nihon Keizai Shimbun 1ssued 1990




Example sentences Ste 1
[Ex.1] -

manguroubu-wo  hakaisi-tattame

mangr \CC destroy-PAST-tame

subordinate clause/ suigai-ga hasseisi-ta
matrix clause flooding-NOM occur-PAST

[Ex.2]

kippu-wo  kau-tame  kippu-uriba-ni i-tta
ticket-ACC  buy-tame

to ticket office go-PAST



Example sentences Ste 1
[Ex.1] -

manguroubu-wo  hakaisi-ta-tame

mangrove-ACC destroy-PAST-tame

suigai-ga hasseisi-ta
flooding-NOM occur-PAST
[Ex.2]
kippu-wo  kau-tame  kippu-uriba-ni I-1ta

ticket-ACC  buy-tame

to ticket office go-PAST



Procedure

SiTORE Select markers. We used “tame”

Sijo2d Evaluate marker’s effectiveness.

SiJolé) Identify the causal relations automatically.



Step 2

@ Evaluate effectiveness of rame

@ How many causal relation instances
are expressed by sentences including rame’?

cause ?% effect ?% E
precond ?% means ?%

etc knowledge of

sentences

(= )
including fame 2% i causal relation

@ Manually classified samples

@ Sample: about 1000 sentences including fame
@ Using linguistic tests



Linguistic tests (1/3)

1. Translate sentence to two base-form items.

@ Some modal information (tense, passive voice, etc.)

1s deleted.
‘ past

Flooding occurred because

mangrove swamps were destroyed.
P~

1 passive voice

(44 . 29
occurrence of flooding
“destroying mangrove swamps’’




Linguistic tests (2/3) Step 2
2. Embed items in the slot of the template

to form a candidate sentence

— @

“occurrence of flooding”

“destroying mangrove swamps” + ---------

\ 4

class: effect (Act,SOA)

II" Argl ]

happens as a result of the execution of

v

I Arg2 J|

3. If the candidate sentence has the correct meaning,

wE

identify the relation as belonging

the class (effect)

O




c+++¢ “possessing a driving license”

Linguistic tests (3/3)

“drIVIng a Car”+ ......................................
; class: effect (Act,SOA) v
I Argl [|happens as a result of the execution of |[ Arg2 |

I
3. If the candidate sentence has the correct meaning,
we 1dentify the relation as belonging

the category.

X




Results

10% of samples were
not within our typology
[Ex.])

hard disk-wo  kairyousuru-tame
hard disk-ACC  1mprove- tame

kaihatsu kyousou-ga gekikasuru
development competition-NOM  1intensity



Results

/
| etc
100

@ Each type of causal relation appeared with relatively
similar frequency



Procedure

SiTORE Select markers. We used “tame”

Sijo2d Evaluate marker’s effectiveness.

applicable of 90% of samples

Sit]olé) Identify the causal relations automatically.




Step 3

@ Identify the causal relations automatically

@ Experiment using a machine learning approach

@ Setting
o5 classes: cause, effect, precond, means and etc
@SVMs / One vs. Rest method was applied

@ Features



R RREREE

Verb

EDR

Features

A desopmons | L

Fou
concg

ALT-J/E

A se
dicti

Goi-Taikei

Ver

Case

Marker

‘(ga

Element

Modality Tense

The

-ru

Aspect

13

_t61

Voice

“_rei

Potential

‘G_de

Negative

‘(_n(

Subject

Wh

Verb = [go: transitive, **]

e

| went to a ticket office.
N\
Tense = [past]

Event type = [Act]

Event type

Agent’s volitional action or non-volitional state of affairs




Features: (Event type estimation) (Sl

@ Act: agent’s volitional action

@ SOA: non-volitional state of affairs
@ Create .

matrix clause

Cansal_rel(Arg1, arg2) S 0.96
&
cause ( SOA SOA) g
= 0.94
effect (Act, SOA ) 8
precond ( SOA, Act) < 092 /
means ( Act, Act) i .
S 0.9 subordinate clause
necessary condit 0.88

0 0102030405 060708 09 1

Event ty coverage




Step 3

@ Identify the causal relations automatically

@ Experiment using a machine learning approach

@ Setting
o35 classes: cause, effect, precond, means and etc
@ SVMs / One vs. Rest method was applied

o Features
¢ Training: about 1000 sentences

@ Evaluation: about 1000 new sentences
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Results

: \X\ rfil

k= \ /x‘ precond

w <@

© %

S 090 A l
P X

& 5

We expect to be able to acquire over 27,000 causal
relation instances from one year of newspaper
articles (1.e. 1.8% of all sentences).



Procedure

SiTORE Select markers. We used “tame”

Sijo2d Evaluate marker’s effectiveness.

applicable to 90% of samples

Sit]olé) Identify the causal relations automatically.
Accuracy was sufficiently high



Examples of causal relation instances

cause ({temperature stays high},
{coat sales are down})

precond ({house becomes cramped},
{someone moves into a larger house})




Examples of causal relation instances
@ Abstraction

@ Ellipsis & pronoun resolution

cause ({the weather has been bad recently },
{the plan 1s 5 days behind schedule})

I

organization| |numerical value| |location

dm



Conclusion

@ We study automatic knowledge acquisition of
causal relations from document collections.

@ Findings

Procedure

SiJoM B Select markers. we used “tame”

Silod Fvaluate marker’s effectiveness.
applicable to 90% of samples

SToRC] [dentify the causal relations automatically.

accuracy was sufficiently high

34

@ Future work

Examples of causal relation instances

Q@ Abstraction
@ Ellipsis & pronoun resolution

cause ({the weather has been bad recently},
{the plan is 5 days behind schedule})

organization| |numerical value| [location
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